
Scripting for Numerics with C++

Uwe Naumann

STCE, RWTH Aachen University

Introduction

▶ Our scripting language SNC++ is a (very small) subset of C++
augmented with support for linear algebra and designed for compatibility
with algorithmic differentiation.

▶ The focus is on illustration of fundamental algorithmic aspects taught as
part of various STCE courses.

▶ The focus is neither on efficiency, nor on quality of software engineering.

▶ Learning SNC++ will be straightforward, if you are not new to
(imperative) programming; it may even serve as motivation to dive deeper
into the exciting world of C++.

▶ The Web1 will be referred to for further reading. This includes the option
to search for appropriate literature that may not be accessible online.

1e.g., https://en.cppreference.com for details on C++
,

Naumann, Scripting for Numerics with C++ 2

Contents

Source Code. Building and Running

Numeric Types and Arithmetic

Defensive Scripting

Flow of Control

Subroutines

Distributed Source

Linear Algebra

File I/O and Visualization

,

Naumann, Scripting for Numerics with C++ 3

Outline

Source Code. Building and Running

Numeric Types and Arithmetic

Defensive Scripting

Flow of Control

Subroutines

Distributed Source

Linear Algebra

File I/O and Visualization

,

Naumann, Scripting for Numerics with C++ 4

Source and I/O

Source file, e.g., source.cpp, generated with a standard text editor:

1 // Hello World example
2 // naumann@stce.rwth−aachen.de
3

4 #include <iostream> // chapter from standard library
5 using namespace std; // avoid namespace std:: prefix, e.g. in std::cout
6

7 int main() {
8 cout << ”What’s your name?” << endl; // output to screen
9 string s; // variable declaration

10 cin >> s; // read from keyboard
11 cout << ”Hello ” << s << ’!’ << endl;
12 return 0; // ignored
13 }

,

Naumann, Scripting for Numerics with C++ 5

Source and I/O (Explained)

▶ Describe (line 1) and “sign” your script (2) (to be omitted in the remaining
sample scripts for brevity). Use further comments, wherever appropriate.

▶ Include relevant chapters of the C++ standard library (4), and avoid the
need for specifying the std:: namespace (5).

▶ The function int main() is required to obtain an executable program (7–13).
We choose to ignore its integer return value.

▶ A concatenation of strings is written to the screen (8,11). String constants
are enclosed in double quotes (8,11). Single character constants are enclosed
in single quotes (11). A special “end of line” marker endl is used for
formatting.

▶ The value of a previously declared variable s of type string (9) is read from
the keyboard (10) (sequence of characters terminated by pressing [Enter]).

▶ Variables need to be declared (9) prior to their first use (10). Declarations
yield aliases for corresponding sections in memory. They are valid inside
the current scope (code wrapped into closest pair of curly brackets) (7–13).

,

Naumann, Scripting for Numerics with C++ 6

Building

You are encouraged to use a Linux computer for building and execution. It
matches the environment used for the presentation of the course.

The GNU C++ Compiler2 g++ is used to translate the source file (e.g.,
source.cpp) into an executable (e.g., source.exe).

Type

g++ source.cpp -o source.exe

on the command line to generate the executable in the subdirectory where
source.cpp is located.

2https://gcc.gnu.org

,

Naumann, Scripting for Numerics with C++ 7

Running

Type

./source.exe

on the command line to run the executable in the subdirectory where
source.exe is located.

Sample session

:−) ./source.exe
What’s your name?
Uwe
Hello Uwe!
:−)

The three character string ”:−)” denotes the command line prompt, which is
likely to look different by default.

,

Naumann, Scripting for Numerics with C++ 8

Outline

Source Code. Building and Running

Numeric Types and Arithmetic

Defensive Scripting

Flow of Control

Subroutines

Distributed Source

Linear Algebra

File I/O and Visualization

,

Naumann, Scripting for Numerics with C++ 9

Numeric Types and Arithmetic

All variables need to be declared, that is, a type needs to be assigned to them.

The following built-in3 numeric types turn out to be sufficient for scripting:

▶ int: integers

▶ double: (double-precision) floating-point numbers

We use double instead of single precision floating-point numbers to allow for
better stability of the numerical methods to be discussed in further detail in the
various courses offered by STCE.

3into C++
,

Naumann, Scripting for Numerics with C++ 10

Type int (int.cpp)

1 #include <iostream>
2 #include <limits> // numeric properties
3 using namespace std;
4

5 int main() {
6 int i; // declaration
7 int j=0; // declaration and initialization
8 i=1; // assignment
9 cin >> j; // user input

10 j=max((j+3∗i)/2,abs(−i)); // sample arithmetic
11 cout << j << endl; // output
12 cout << numeric limits<int>::max() << endl // largest value
13 << numeric limits<int>::min() << endl; // smallest value
14 return 0;
15 }

,

Naumann, Scripting for Numerics with C++ 11

Type int (Explained)

▶ Declared variables hold uncertain values (line 6). They should be initialized
with some integer constant for deterministic behavior (7).

▶ Alternatively, values can be assigned explicitly (8).

▶ Users can supply values via the keyboard (9) (sequence of digits terminated
by [Enter]); values can be written to the screen (11).

▶ A wide range of integer arithmetic is supported, including +,−,∗,/,%.
Expressions are evaluated from left to right. The usual rules of operator
precedence apply. Alternative orders can be implemented by explicit
bracketing (10).

▶ Access to the numeric properties of integers is provided by the <limits>

chapter of the standard library (2), e.g., their range is limited to
[−2147483648, 2147483647] (lines 12,13).

▶ Refer to the Web for further details on integer variables and arithmetic.

,

Naumann, Scripting for Numerics with C++ 12

Type int (Sample Session)

:−) ./int.exe
2 // user input
22 // output ...
2147483647
−2147483648

Integer division rounds to towards zero, e.g., 45
2 = 22.

Wrong values are computed if integer values exceed the range of type int, e.g.,

:−) ./int.exe
2147483647 // user input
−1073741823 // output ... <−− ???
2147483647
−2147483648

Refer to the Web for details.

,

Naumann, Scripting for Numerics with C++ 13

Type double (double.cpp)

1 #include <iostream>
2 #include <cmath> // arithmetic
3 #include <limits> // numeric properties
4 using namespace std;
5

6 int main() {
7 double x; // declaration
8 double y=1.01; // declaration and initialization
9 x=1.1e−2; // assignment of 0.011

10 cin >> y; // user input
11 y=sin(pow(fabs(−x),y)); // sample arithmetic
12 cout << y << endl; // output
13 cout << numeric limits<double>::max() << endl // largest double value
14 << numeric limits<double>::min() << endl // smallest double value
15 << numeric limits<double>::epsilon() << endl; // machine epsilon
16 return 0;
17 }

,

Naumann, Scripting for Numerics with C++ 14

Type double (Explained)

▶ Non-integer numerical values are stored in floating-point format.

▶ Real values are represented by a grid of discrete floating-point numbers
yielding various unpleasant numerical effects due to rounding and
cancellation.

▶ The range of double is limited to ±[2.22507 · 10−308, 1.79769 · 10308].
▶ double constants can be written in decimal (line 8) or scientific notation (9).

▶ The precision of double yields 15 significant digits in decimal notation.

▶ Implicit conversion of float-point values to int (also: narrowing) uses
rounding.

▶ Arithmetic operators include +,−,∗,/. Arithmetic functions include
sin,cos,exp,log,fabs,fmax.

▶ Refer to the Web for further details on floating-point arithmetic4

arithmetic operators and <cmath>.

4e.g., https://ieeexplore.ieee.org/document/8766229
,

Naumann, Scripting for Numerics with C++ 15

Type double (Sample Session)

:−) ./double.exe
0.42 // user input
0.149881 // output ...
1.79769e+308
2.22507e−308
2.22045e−16

:−) ./double.exe
42.0 // user input
5.47637e−83 // output ...
1.79769e+308
2.22507e−308
2.22045e−16

Note output in decimal vs. scientific format.

,

Naumann, Scripting for Numerics with C++ 16

Outline

Source Code. Building and Running

Numeric Types and Arithmetic

Defensive Scripting

Flow of Control

Subroutines

Distributed Source

Linear Algebra

File I/O and Visualization

,

Naumann, Scripting for Numerics with C++ 17

Defensive Scripting

1 #include <iostream>
2 #include <cassert> // assertion
3 #include <cmath>
4 using namespace std;
5

6 int main() {
7 double x;
8 cin >> x;
9 assert(x>0); // x required to be greater than zero

10 cout << sqrt(x) << endl;
11 return 0;
12 }

,

Naumann, Scripting for Numerics with C++ 18

Defensive Scripting

▶ The standard library chapter <cassert> (line 2) provides an assertion which
fails if the condition provided as its argument evaluates to false.

▶ Conditions are formulated by comparing numerical values using relational
(>,<,==,!=,>=,<=) operators, e.g., (9)

▶ Conditions are joined by logical (!,&&,|| corresponding to negation, AND,
inclusive OR, respectively) operators.

▶ Refer to the Web for further details on forming conditions using relational
and logical operators.

▶ Sample session:

:−) ./assert.exe
1
1
:−) ./assert.exe
−1
assert.exe: assert.cpp:9: int main(): Assertion ‘x>0’ failed.
Aborted (core dumped)

,

Naumann, Scripting for Numerics with C++ 19

Outline

Source Code. Building and Running

Numeric Types and Arithmetic

Defensive Scripting

Flow of Control

Subroutines

Distributed Source

Linear Algebra

File I/O and Visualization

,

Naumann, Scripting for Numerics with C++ 20

Flow of Control

We consider

▶ branches
▶ if ... [else ...]

▶ values of conditions
▶ bool

▶ loops
▶ while ... do ...
▶ do ... while ...

,

Naumann, Scripting for Numerics with C++ 21

if-Branch (if 1.cpp)

1 #include <iostream>
2 #include <cmath>
3 using namespace std;
4

5 int main() {
6 double x,y;
7 cin >> x; // user input
8 if (x==0) { // test for possible error due to x equal to zero
9 cout << ”Error: log(0) not defined.” << endl; // report error ...

10 return 0; // ... and leave the script
11 }
12 if (x<0) { // deal with infeasible negative argument ...
13 x=−x; // ... by negating it
14 }
15 y=log(x); // evaluate the natural logarithm
16 cout << y << endl;
17 return 0;
18 }

,

Naumann, Scripting for Numerics with C++ 22

if-Branch (Explained)

▶ The code in curly brackets (e.g. x=−x; in line 13) is executed if the condition
(e.g. x<0, (12)) evaluates to true.

▶ Potentially very complex conditions can be formulated using relational and
logical operators.

▶ Error handling should be implemented, e.g. for potentially incorrect user
inputs (8–11). Premature termination of the script may have to be the
consequence (10).

▶ Alternative branches (else) as well as nested branches can be implemented
as illustrated by the upcoming variants.

,

Naumann, Scripting for Numerics with C++ 23

if-Branch (Sample Session)

:−) ./if 1.exe
1 // user input
0 // output

:−) ./if 1.exe
−2.71 // user input
0.996949 // output

:−) ./if 1.exe
0 // user input
Error: log(0) not defined. // output

,

Naumann, Scripting for Numerics with C++ 24

if-Branch Variant (if 2.cpp)

1 #include <iostream>
2 #include <cmath>
3 using namespace std;
4

5 int main() {
6 double x,y;
7 cin >> x;
8 if (x==0) {
9 cout << ”Error: log(0) not defined.” << endl;

10 return 0;
11 }
12 if (x<0) { // self−explanatory
13 y=log(−x);
14 } else {
15 y=log(x);
16 }
17 cout << y << endl;
18 return 0;
19 }

,

Naumann, Scripting for Numerics with C++ 25

Type bool (bool.cpp)

1 #include <iostream>
2 #include <limits> // numeric properties
3 using namespace std;
4

5 int main() {
6 bool b; // declaration
7 bool c=0; // declaration and initialization with 0=false
8 b=1; // assignment of 1=true
9 cin >> c; // user input

10 b=!((b&&c)||c); // sample arithmetic
11 cout << b << endl; // output
12 cout << numeric limits<bool>::max() << endl // largest value
13 << numeric limits<bool>::min() << endl; // smallest value
14 return 0;
15 }

,

Naumann, Scripting for Numerics with C++ 26

Type bool (Explained)

▶ Values of conditions, e.g. for defining the flow of control, can be stored in
Boolean variables, e.g. b (line 6).

▶ Boolean variables should be initialized with a Boolean constant, e.g. 0

(equivalently, false) (7).

▶ Boolean constant 1 (equivalently, true) can be assigned to Boolean
variables (8).

▶ Values of Boolean variables can be provided via the keyboard (9).

▶ Boolean arithmetic uses negation (!), logical AND (&&) and logical
(inclusive) OR (||) (10).

▶ The properties of Boolean variables can be investigated using the <limits>

chapter of the standard library (2,12,13).

▶ Refer to the Web for further details on Boolean variables and arithmetic.

,

Naumann, Scripting for Numerics with C++ 27

Type bool (Sample Session)

:−) ./bool.exe
1 // user input
0 // output ...
1
0

:−) ./bool.exe
0 // user input
1 // output ...
1
0

,

Naumann, Scripting for Numerics with C++ 28

if-Branch Variant (if 3.cpp)

1 #include <iostream>
2 #include <cmath>
3 using namespace std;
4

5 int main() {
6 double x,y;
7 cin >> x;
8 bool error=false; // Boolean variable
9 if (x==0) {

10 cout << ”Error: log(0) undefined” << endl;
11 error=true; // x equal to zero amounts to an error
12 } else if (x<0) {
13 y=log(−x);
14 } else {
15 y=log(x);
16 }
17 if (!error) { // print result unless there was an error
18 cout << y << endl;
19 }
20 return 0;
21 }

,

Naumann, Scripting for Numerics with C++ 29

while-do-Loop (while do.cpp)

1 #include <cmath>
2 #include <iostream>
3 using namespace std;
4

5 int main() {
6 double x, eps=5e−1;
7 cin >> x;
8 while (fabs(x)>eps) { // [re]iteration criterion
9 x=sin(x); // loop ...

10 cout << x << endl; // ... body
11 }
12 return 0;
13 }

,

Naumann, Scripting for Numerics with C++ 30

while-do-Loop (Explained)

▶ The loop body (lines 9–10) is reexecuted while the condition (fabs(x)>eps)
evaluates to true.

▶ Zero or more loop iterations are possible. The condition is checked before
the first iteration.

▶ Termination may not be guaranteed. The sample loop terminates due to
contractiveness of the sine function.

▶ Nesting of loops and combinations with branch constructs are supported.

,

Naumann, Scripting for Numerics with C++ 31

while-do-Loop (Sample Session)

:−) ./while do.exe
1 // user input
0.841471 // output ...
0.745624
0.67843
0.627572
0.587181
0.554016
0.526107
0.502171
0.481329

:−) ./while do.exe
0.5 // user input
// no output

,

Naumann, Scripting for Numerics with C++ 32

do-while-Loop (do while.cpp)

1 #include <cmath>
2 #include <iostream>
3 using namespace std;
4

5 int main() {
6 double x, eps=5e−1;
7 cin >> x;
8 do { // at least one iteration guaranteed
9 x=sin(x); // loop ...

10 cout << x << endl; // ... body
11 } while (fabs(x)>eps); // reiteration criterion
12 return 0;
13 }

,

Naumann, Scripting for Numerics with C++ 33

do-while-Loop (Explained)

▶ The loop body (lines 9–10) is reexecuted while the condition (fabs(x)>eps)
evaluates to true.

▶ One or more loop iterations are possible. The condition is checked after
the first iteration.

▶ Termination may not be guaranteed. The sample loop terminates due to
contractiveness of the sine function.

▶ Nesting of loops and combinations with branch constructs are supported.

,

Naumann, Scripting for Numerics with C++ 34

do-while-Loop (Sample Session)

:−) ./do while.exe
1 // user input
0.841471 // output ...
0.745624
0.67843
0.627572
0.587181
0.554016
0.526107
0.502171
0.481329

:−) ./do while.exe
0.5 // user input
0.479426 // output

,

Naumann, Scripting for Numerics with C++ 35

Outline

Source Code. Building and Running

Numeric Types and Arithmetic

Defensive Scripting

Flow of Control

Subroutines

Distributed Source

Linear Algebra

File I/O and Visualization

,

Naumann, Scripting for Numerics with C++ 36

Subroutines

We discuss

▶ definition

▶ execution

▶ arguments
▶ passed by value
▶ passed by reference
▶ return values

▶ templates

▶ headers

,

Naumann, Scripting for Numerics with C++ 37

Subroutines (subroutines 1.cpp)

1 #include <cmath>
2 #include <iostream>
3 using namespace std;
4

5 void do something(double x, double eps) { // subroutine (no value returned)
6 do {
7 x=sin(x);
8 cout << x << endl;
9 } while (fabs(x)>eps);

10 }
11

12 int main() {
13 double x;
14 cin >> x;
15 do something(x,0.5); // subroutine call
16 return 0;
17 }

,

Naumann, Scripting for Numerics with C++ 38

subroutines 1.cpp (Explained)

▶ Subroutines have a name (e.g. do something), a (return) type (e.g. void for
missing return value), and a list of typed arguments (e.g. double x,

double eps) (line 5).

▶ Subroutines are called by their name with a possibly empty list of actual
arguments (e.g. x,0.5) (15).

▶ By default, arguments are passed “by value”. All computation inside the
subroutine is performed on local copies of the actual arguments (e.g. local
x, which is not the same x as the one declared in main, and eps).

▶ Optionally, additional local variables can be declared and used inside
subroutines.

▶ The given subroutine has no effect on its caller. It performs a task and
prints information to the screen.

,

Naumann, Scripting for Numerics with C++ 39

Subroutines Variant: return (subroutines 2.cpp)

1 #include <cmath>
2 #include <iostream>
3 using namespace std;
4

5 double f(double x, double eps) { // function (with return value)
6 double y=x; // result to be computed
7 do {
8 y=sin(y);
9 } while (fabs(y)>eps);

10 return y; // result returned
11 }
12

13 int main() {
14 double x;
15 cin >> x;
16 double y=f(x,0.5); // function call
17 cout << y << endl;
18 return 0;
19 }

,

Naumann, Scripting for Numerics with C++ 40

subroutines 2.cpp (Explained)

▶ The subroutine is declared to return a value of type double to the caller,
that is, to main (line 5).

▶ A local variable y is declared to hold the value to be returned (6).
Equivalently, this computation could have been performed on the local
variable x, similar to subroutines 1.cpp.

▶ A copy of y is returned (10) as the local variable runs out of scope when
leaving the subroutine.

▶ The value of this copy is assigned to a variable declared in the caller (16).

,

Naumann, Scripting for Numerics with C++ 41

Subroutines Variant: Reference (subroutines 3.cpp)

1 #include <cmath>
2 #include <iostream>
3 using namespace std;
4

5 void f(double& x, double eps) { // x passed by reference; eps passed by value
6 do {
7 x=sin(x);
8 } while (fabs(x)>eps);
9 }

10

11 int main() {
12 double x;
13 cin >> x;
14 f(x,0.5);
15 cout << x << endl;
16 return 0;
17 }

,

Naumann, Scripting for Numerics with C++ 42

subroutines 3.cpp (Explained)

▶ Arguments to be passed by reference are marked by the prefix & (e.g., x in
line 5). Note that whitespaces are ignored by the compiler, that is, you can
decide whether to attach the & to the type (as done here) or to the
variable name.

▶ Passing arguments by reference represents an alternative to returning
values to the caller as all modification are performed on the actual
argument.

▶ Constants need to be passed to subroutines by value (e.g., 0.5 (14)

initializing the local variable eps inside f). Only variables can be passed by
reference (e.g., x (14)).

,

Naumann, Scripting for Numerics with C++ 43

Subroutines Variant: Template (subroutines 4.cpp)

1 #include <cmath>
2 #include <iostream>
3 using namespace std;
4

5 template<typename T> // variable argument type T
6 int f(T& x) { // reference to actual argument of type T
7 int i=0;
8 while (fabs(x)>1) {
9 x=x/2; i=i+1;

10 }
11 return i;
12 }
13

14 int main() { // compiler generates two versions of f ...
15 double x=−42.0;
16 cout << f(x) << ’ ’; cout << x << endl; // ... T=double
17 int i=42;
18 cout << f(i) << ’ ’; cout << i << endl; // ... T=int
19 return 0;
20 }

,

Naumann, Scripting for Numerics with C++ 44

subroutines 4.cpp (Explained)

▶ The compiler can help to generate instances of subroutines for varying
types of arguments (and local variables). Templates for such subroutines
need to be provided (lines 5–14).

▶ Here, the argument x has variables type. It is passed by reference.

▶ Actual instances of the subroutine are computed by the compiler based on
calling scenarios. Here, instances for both T=int (18) and T=double (20) are
generated.

▶ The arithmetic performed by the subroutine needs to be valid for all types
used for instantiation.

▶ Templates will play a prominent role in the context of algorithmic
differentiation; see various courses offered by STCE.

,

Naumann, Scripting for Numerics with C++ 45

subroutines 4.cpp (Sample Session)

The following output is generated.

1 6 −0.65625
2 5 1

The T=double instance of the template subroutine performs six loop iterations
to reduce the absolute value of x to at most one. It computes
x=−21.0,−10.5,−5.25,−2.625,−1.3125,−0.65625.

Due to integer arithmetic, the T=int instance of the template subroutine
performs only five loop iterations to reduce the absolute value of x to at most
one. It computes x=21,10,5,2,1.

,

Naumann, Scripting for Numerics with C++ 46

Subroutines Variant: Header (subroutines 5.cpp)

1 #include ”subroutines 5.h” // contents of this file replaces this line
2

3 #include <iostream>
4 using namespace std;
5

6 int main() {
7 double x=42.0;
8 cout << f(x) << ’ ’; cout << x << endl;
9 int i=−42;

10 cout << f(i) << ’ ’; cout << i << endl;
11 return 0;
12 }

,

Naumann, Scripting for Numerics with C++ 47

Subroutines Variant (subroutines 5.h)

1 #include<cmath> // required by instances of the template for f
2 using namespace std;
3

4 template<typename T> // template for instances of f
5 int f(T& x) {
6 int i=0;
7 while (fabs(x)>1) {
8 x=x/2; i=i+1;
9 }

10 return i;
11 }

,

Naumann, Scripting for Numerics with C++ 48

subroutines 5.[h,cpp] (Explained)

▶ Subroutines as well as corresponding templates can be “outsourced” into
header files (e.g., subroutines 5.h). Readability and maintainability may
thus be improved.

▶ Header files need to be included into scripts that call subroutines (or
instances of corresponding templates) contained therein, e.g., line 1 in
subroutines 5.cpp. The #include command needs to precede any uses of
contents of the included header file.

▶ Chapters of the C++ standard library should be included where used, e.g.,
<cmath> in subroutines 5.h and <iostream> in subroutines 5.cpp. Possible
duplication is taken care of by the compiler.

▶ The following output is generated.

1 6 0.65625
2 5 −1

,

Naumann, Scripting for Numerics with C++ 49

Subroutines Variant: Recursion (subroutines 6.cpp)

1 #include <cmath>
2 #include <iostream>
3 using namespace std;
4

5 template<typename T>
6 int f(T& x, int i) {
7 if (fabs(x)>1) {
8 x=x/2;
9 i=f(x,i)+1; // recursion

10 }
11 return i;
12 }
13

14 int main() {
15 double x=−42.0;
16 cout << f(x,0) << ’ ’; cout << x << endl;
17 int i=42;
18 cout << f(i,0) << ’ ’; cout << i << endl;
19 return 0;
20 }

,

Naumann, Scripting for Numerics with C++ 50

subroutines 6.cpp (Explained)

▶ Recursion (calls of subroutines from inside themselves, e.g., line 9) is
supported.

▶ Some algorithms are best stated (and implemented) recursively.

▶ The logic of this algorithm is best understood by augmenting its
implementation with statements for writing values of the variables x and i

to the screen.

▶ The same output as for subroutines 4.cpp is generated.

,

Naumann, Scripting for Numerics with C++ 51

Outline

Source Code. Building and Running

Numeric Types and Arithmetic

Defensive Scripting

Flow of Control

Subroutines

Distributed Source

Linear Algebra

File I/O and Visualization

,

Naumann, Scripting for Numerics with C++ 52

Distributed Source

▶ The structure of source code the can be improved by moving subprograms
to separate include files.

▶ Include files start with #pragma once (include/script.h: line 1) to avoid accidental
repeated inclusion (and, hence, errors due to multiple definitions of the
same subprogram).

▶ Functions called by several scripts should be implemented only once
(include/script.h: lines 7–11). Multiple copies of the same source code can thus be
avoided.

▶ Usage of functions defined in include files requires inclusion of the latter
(script.cpp: line 1).

▶ Include files can be stored in separate directories. The compiler needs to
be informed about the relative (with respect to the directory of the source
script) location of these directories via its −I option.

,

Naumann, Scripting for Numerics with C++ 53

include/script.h

1 #pragma once // prevent multiple definitions due to repeated inclusion
2

3 #include <cassert>
4 #include <cmath>
5 using namespace std;
6

7 template <typename T>
8 T f(T x) {
9 assert(x>0);

10 return log(x);
11 }

,

Naumann, Scripting for Numerics with C++ 54

script.cpp

1 #include ”script.h” // definition of f
2

3 #include <iostream>
4 using namespace std;
5

6 int main() {
7 double x;
8 cin >> x;
9 cout << f(x) << endl;

10 return 0;
11 }

Build as

g++ −I./include script.cpp −oscript.exe

,

Naumann, Scripting for Numerics with C++ 55

Outline

Source Code. Building and Running

Numeric Types and Arithmetic

Defensive Scripting

Flow of Control

Subroutines

Distributed Source

Linear Algebra

File I/O and Visualization

,

Naumann, Scripting for Numerics with C++ 56

Vector and Matrix Arithmetic

▶ Dynamically sized vector and matrix types are provided by Eigen5., a C++
template library for linear algebra.

▶ Vectors and matrices (and tensors, e.g., vectors of matrices or matrices of
matrices) of entries of diverse types, e.g., double, int, bool, can be
implemented.

▶ Basic linear algebra operations as well as direct solvers for linear systems
will be considered.

▶ Conceptually, the entire range of functionalities provided by Eigen is
available for SNC++.

5https://eigen.tuxfamily.org/
,

Naumann, Scripting for Numerics with C++ 57

Vectors (vector.cpp)

1 #include <Eigen/Dense> // Eigen library
2 #include <cmath>
3 #include <iostream>
4 using namespace std;
5

6 int main() {
7 int n=3;
8 Eigen::VectorX<double> v(n); // allocation
9 int i=0;

10 do {
11 v(i)=cos(i); // assignment of values to vector entries
12 i=i+1;
13 } while (i<n);
14 i=0;
15 do {
16 cout << v(i) << endl; // read access to vector entries
17 i=i+1;
18 } while (i<v.size()); // vector size
19 return 0;
20 }

,

Naumann, Scripting for Numerics with C++ 58

Vectors (Explained)

▶ The Eigen (template) library needs to be included (line 1).

▶ A vector v of n elements (here, n=3) of variable type (here, of type double)
is allocated (8).

▶ Access to individual entries requires specification of the index in
parentheses (11,16).

▶ Various characteristics of a vector can be queried with the help of member
functions, e.g. its size (18). A member function f without arguments is
invoked on a variable v as v.f(). Their implementation is beyond the scope
of SNC++.

▶ Sample session:

:−) ./vector.exe
1
0.540302
−0.416147

By default, vectors are (printed as) column vectors.

,

Naumann, Scripting for Numerics with C++ 59

Building

Let the Eigen library be installed in the subdirectory eigen-3.4.0 of the
directory containing all sample scripts.

Type

g++ -Ieigen-3.4.0 vector.cpp -o vector.exe

on the command line to generate the executable vector.exe.

The -Ieigen-3.4.0 option tells the compiler where to find the Eigen library,
more specifically, Eigen/Dense.

,

Naumann, Scripting for Numerics with C++ 60

Vector Constants (vector constants.cpp)

1 #include <Eigen/Dense>
2 #include <iostream>
3 using namespace std;
4

5 int main() {
6 int n=3;
7 using VT=Eigen::VectorX<double>; // alias for type name
8 VT v=VT::Zero(n); // all zeros
9 cout << v.transpose() << endl;

10 v=VT::Ones(n); // all ones
11 cout << v.transpose() << endl;
12 v=VT::Unit(n,1); // (second) Cartesian basis vector
13 cout << v.transpose() << endl;
14 v=VT::Random(n); // all (pseudo−)random
15 cout << v.transpose() << endl;
16 return 0;
17 }

,

Naumann, Scripting for Numerics with C++ 61

Vector Constants (Explained)

▶ Aliases for (vector) types can be introduced with the help of the using

clause (line 7). The resulting more compact notation can be convenient in
case of repeated use (8,10,12,14).

▶ Vectors can be initialized with vector constants, e.g., the zero vector (8).

▶ Similarly, vector constants can be assigned to vectors, e.g., a vector of all
ones (10), a Cartesian basis vector (here, the second) (12) or a vector of
pseudo-random numbers (14).

▶ Vectors can be treated (e.g., printed) as row vectors by transposing them
using the member functiontranspose (9,11,13,15).

▶ Sample session:

:−) ./vector constants.exe
0 0 0
1 1 1
0 1 0
0.680375 −0.211234 0.566198

,

Naumann, Scripting for Numerics with C++ 62

Matrices (matrix.cpp) I

1 #include <Eigen/Dense>
2 #include <iostream>
3 using namespace std;
4

5 int main() {
6 int m=2, n=4;
7 Eigen::MatrixX<double> M(m,n); // allocation
8 int i,j;
9

10 i=0;
11 do { // loop over rows
12 j=0;
13 do { // loop over columns
14 M(i,j)=i+j; // assignment if values to matrix entries
15 j=j+1;
16 } while (j<n);
17 i=i+1;
18 } while (i<m);
19

20 i=0;
21 do {

,

Naumann, Scripting for Numerics with C++ 63

Matrices (matrix.cpp) II

22 j=0;
23 do {
24 cout << M(i,j) << ’ ’; // read access to matrix entries
25 j=j+1;
26 } while (j<M.cols()); // number of columns
27 cout << endl;
28 i=i+1;
29 } while (i<M.rows()); // number of rows
30

31 return 0;
32 }

,

Naumann, Scripting for Numerics with C++ 64

Matrices (Explained)

▶ A matrix M with m rows (here, m=2) and n columns ((here, n=4) of entries
of variable type (here, of type double) is allocated (line 7).

▶ Access to individual entries requires specification of the row index followed
by the column index in parentheses (14,24).

▶ Various characteristics of a matrix can be queried, e.g. the number of its
colums (26) or rows (29).

▶ Sample session:

:−) ./matrix.exe
0 1 2 3
1 2 3 4

By default, matrices are treated as (e.g., printed) as row major. They can
be transposed (M.transpose()) to obtain column major ordering.

,

Naumann, Scripting for Numerics with C++ 65

Matrix Constants (matrix constants.cpp)

1 #include <Eigen/Dense>
2 #include <iostream>
3 using namespace std;
4

5 template<typename T>
6 using MT=Eigen::MatrixX<T>;
7

8 int main() {
9 int n=2, m=4;

10 using T=double;
11 MT<T> M=MT<T>::Zero(n,m); // all zeros
12 cout << M << endl << endl;
13 M=MT<T>::Ones(n,m); // all ones
14 cout << M << endl << endl;
15 M=MT<T>::Identity(n,n); // identity
16 cout << M << endl << endl;
17 M=MT<T>::Random(n,m); // all (pseudo−)random
18 cout << M << endl;
19 return 0;
20 }

,

Naumann, Scripting for Numerics with C++ 66

Matrix Constants (Explained)

▶ Aliases for (matrix) types over variable element types can be introduced
with the help of the (global) type-generic using clause (lines 5,6). The actual
type needs to be specified when using the alias (11,13,15,17). Fixed-type
(global) using clauses are also supported.

▶ Constants similar to those available for vectors can be used to initialize
matrices (11), or they can be assigned to matrices (13,15,17).

▶ Matrix sizes are adapted dynamically (e.g. from line 13 to line 15 to line 17).

▶ Sample session:

:−) ./matrix constants.exe
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1

1 0
0 1

0.680375 0.566198 0.823295 −0.329554
−0.211234 0.59688 −0.604897 0.536459

,

Naumann, Scripting for Numerics with C++ 67

Inner Vector Product (wTv.cpp)

1 #include <Eigen/Dense>
2 #include <iostream>
3 using namespace std;
4

5 int main() {
6 int n=3;
7 using VT=Eigen::VectorX<double>;
8 VT v=VT::Random(n);
9 cout << v.transpose() << endl; // single line output

10 double vTv=v.dot(v);
11 cout << vTv << ”==” << v.squaredNorm() << endl; // equal
12 v=VT::Unit(n,0);
13 VT w=VT::Unit(n,n−1);
14 cout << w.dot(v) << endl; // orthogonal
15 return 0;
16 }

,

Naumann, Scripting for Numerics with C++ 68

Inner Vector Product (Explained)

▶ The inner (dot) product of two vectors u, v ∈ IRn is defined as

uT · v =
∑n−1

i=0 ui · vi ∈ IR. Eigen provides the corresponding functionality
in form of the member function dot (lines 10,14). As a member function of the
first operand it takes the second operand as an argument.

▶ Note that vT · v = ∥v∥22 =
∑n−1

i=0 v2
i , where the squared Euclidean norm of

a vector is implemented in Eigen via the member function squaredNorm (11).

▶ The inner product of orthogonal vectors (e.g., distinct Cartesian basis
vectors) is equal to zero squaredNorm function (12–14).

▶ Sample session:

:−) ./wTv.exe
0.680375 −0.211234 0.566198
0.828111==0.828111
0

,

Naumann, Scripting for Numerics with C++ 69

Matrix-Vector Product (Mv.cpp)

1 #include <Eigen/Dense>
2 using VT=Eigen::VectorX<double>;
3 using MT=Eigen::MatrixX<double>;
4

5 #include <iostream>
6 using namespace std;
7

8 int main() {
9 int m,n;

10 cout << ”m=”; cin >> m; // number of rows
11 cout << ”n=”; cin >> n; // number of columns
12 VT x=VT::Random(n);
13 MT A=MT::Random(m,n);
14 VT y=A∗x; // matrix−vector product
15 cout << y.transpose() << endl;
16 return 0;
17 }

,

Naumann, Scripting for Numerics with C++ 70

Matrix-Vector Product (Explained)

▶ The product of a matrix A(Aj,i) ∈ IRm×n with a vector x = (xi) ∈ IRn is a
vector y = A · x ∈ IRm defined as

y = (yj) ≡
(∑n−1

i=0 Aj,i · xi
)
j=0,...,m−1

.

The operator ∗ is overloaded 6 accordingly (line 1r43).

▶ A random matrix of user-defined size m× n (13) is multiplied with a random
vector of matching size n (12) to yield the result of size m.

▶ The result is transposed prior to being printed (15).

6Overloading of functions and operators is supported by C++. It will be used prominently
in the context of algorithmic differentiation taught as part of several courses offered by STCE.

,

Naumann, Scripting for Numerics with C++ 71

Matrix-Vector Product (Sample Session)

We run three sample sessions with varying problem sizes for illustration.

:−) ./Mv.exe
m=2 // user input ...
n=3
0.83762 0.378115 // output

:−) ./Mv.exe
m=1 // user input ...
n=3
−0.110297 // output

:−) ./Mv.exe
m=3 // user input ...
n=1
−0.143719 0.385228 0.406103 // output

You are encouraged to validate the results with pen and paper ...

,

Naumann, Scripting for Numerics with C++ 72

Matrix-Matrix Product (MM.cpp)

1 #include <Eigen/Dense>
2 #include <iostream>
3 using namespace std;
4

5 int main() {
6 int m,n,p;
7 cout << ”m=”; cin >> m;
8 cout << ”n=”; cin >> n; // size of shared dimension
9 cout << ”p=”; cin >> p;

10 using MT=Eigen::MatrixX<double>;
11 MT A=MT::Random(m,n);
12 MT B=MT::Random(n,p);
13 MT C=A∗B; // matrix−matrix product
14 cout << C << endl;
15 return 0;
16 }

,

Naumann, Scripting for Numerics with C++ 73

Matrix-Matrix Product (Explained)

▶ The product of two matrices A ∈ IRm×n and B ∈ IRn×p is a matrix
C = A · B ∈ IRm×p defined as

C = (Ck,i) ≡
(∑n−1

j=0 Ak,j · Bj,i

)k=0,...,m−1

i=0,...,p−1
.

The operator ∗ is overloaded accordingly (line 13).

▶ Two random matrices with a shared dimension are multiplied.

▶ The size of the shared dimension is equal to the number of columns of the
first operand, which must be equal the number of rows of the second
operand.

▶ We run three sample sessions with varying problem sizes for illustration.
Again, you are encouraged to validate the results with pen and paper ...

,

Naumann, Scripting for Numerics with C++ 74

Matrix-Matrix Product (Sample Sessions)

:−) ./MM.exe
m=2 // user input
k=3
n=4
−0.286392 0.260042 0.575817 1.07782 // output ...
0.658662 −0.20569 −0.473983 −0.276707

:−) ./MM.exe
m=1 // user input
k=10
n=1
0.504171 // output

:−) ./MM.exe
m=3 // user input
k=1
n=3
0.406103 0.56015 −0.411557 // output ...

−0.126081 −0.173908 0.127775
0.337953 0.466148 −0.342492

,

Naumann, Scripting for Numerics with C++ 75

Solution of Linear Systems (LS.cpp)

1 #include <Eigen/Dense>
2 #include <iostream>
3 using namespace std;
4

5 int main() {
6 int n;
7 cout << ”n=”; cin >> n;
8 using MT=Eigen::MatrixX<double>;
9 using VT=Eigen::VectorX<double>;

10 MT A=MT::Random(n,n); // (invertible) system matrix
11 VT b=VT::Random(n); // right−hand side
12 VT x=A.lu().solve(b); // direct solution by LU factorization
13 cout << x.transpose() << endl << endl;
14 MT X=A.lu().solve(MT::Identity(n,n)); // inversion
15 cout << X << endl << ”=” << endl << A.inverse() << endl;
16 return 0;
17 }

,

Naumann, Scripting for Numerics with C++ 76

Solution of Linear Systems (Explained)

▶ Direct solvers for systems of linear equations

A · x = b, A ∈ IRn×n, b ∈ IRn

determine x ∈ IRn, such that x = A−1 · b, where A−1 denotes the inverse
of A.

▶ A needs to be invertible. All pseudo-random square matrices generated by
Eigen satisfy this requirement (line 10).

▶ Different factorizations of A are supported by Eigen, including LU (line 12),
LLT , and QR.

▶ The solution of the linear system is computed by the function solve,
implementing, e.g., forward and backward substitution (12).

▶ Inversion of A amounts to solving n simultaneous linear equations
A · X = I with X , I ∈ IRn×n and where I denotes the identity matrix (13).

▶ Eigen provides the member function inverse for the same task (14).

,

Naumann, Scripting for Numerics with C++ 77

Solution of Linear Systems (Sample Session)

:−) ./LS.exe
n=3 // user input
0.60876 −0.231282 0.51038 // output ...

−0.198521 2.22739 2.8357
1.00605 −0.555135 −1.41603

−1.62213 3.59308 3.28973
=
−0.198521 2.22739 2.8357
1.00605 −0.555135 −1.41603

−1.62213 3.59308 3.28973

As before, you are encouraged to validate the results with pen and paper ...

,

Naumann, Scripting for Numerics with C++ 78

Outline

Source Code. Building and Running

Numeric Types and Arithmetic

Defensive Scripting

Flow of Control

Subroutines

Distributed Source

Linear Algebra

File I/O and Visualization

,

Naumann, Scripting for Numerics with C++ 79

File I/O (fstream.cpp)

1 #include <fstream>
2 using namespace std;
3

4 template<typename T>
5 void in(T& x, string filename) { // read from file
6 ifstream ifs(filename); ifs >> x; // input file stream
7 }
8

9 template<typename T>
10 void out(T x, string filename) { // write to file
11 ofstream ofs(filename); ofs << x; // output file stream
12 }
13

14 int main() {
15 int i; double x;
16 in(i,”int.in”); out(i,”int.out”);
17 in(x,”double.in”); out(x,”double 1.out”);
18 in(i,”double.in”); out(i,”double 2.out”);
19 return 0;
20 }

,

Naumann, Scripting for Numerics with C++ 80

File I/O (Explained)

▶ Data can be read from / written to text files via file streams defined in
<fstream> (line 1).

▶ Declaration of an input file stream of type ifstream requires specification of
the name (of type string) of the file to be read from (6).

▶ Output file streams of type ofstream are declared analogously (12).

▶ Their usage is similar to cin and cout (6,12).

▶ The sample session illustrates the effects of file i/o for varying (potentially
incompatible) data types.

,

Naumann, Scripting for Numerics with C++ 81

File I/O (Sample Session)

▶ Let the text file int.in contain the string 42 while double.in contains the
string 4.2.

▶ The text file int.out is an exact copy of int.in (line 16).

▶ Similarly, double 1.out is an exact copy of double 1.in (17).

▶ The text file double 2.out contains the string 4 due to narrowing (rounding
of 4.2 according to the data type of i, which is equal to int) (18).

▶ Similar effects can be observed for cin and cout.

,

Naumann, Scripting for Numerics with C++ 82

Drawing Graphs (graphviz.cpp)

1 #include <fstream>
2 using namespace std;
3

4 int main() {
5 ofstream ofs(”g.dot”); // output file
6 ofs << ”digraph {” << endl; // a directed graph ...
7 int n=4,i,j;
8 i=0;
9 do {

10 j=i+1;
11 if (j<n) {
12 do {
13 ofs << i << ” −> ” << j << endl; // ... is a set of edges
14 j=j+1;
15 } while (j<n);
16 }
17 i=i+1;
18 } while (i<n);
19 ofs << ”}” << endl; // ... end of directed graph
20 return 0;
21 }

,

Naumann, Scripting for Numerics with C++ 83

Drawing Graphs Explained

▶ Input files for graphviz can be generated, e.g. a directed acyclic complete
graph with four vertices.

▶ :-) dot -Tpdf g.dot -o g.pdf generates the following graph in
g.pdf:

0

1

2

3

digraph {
0 −> 1
0 −> 2
0 −> 3
1 −> 2
1 −> 3
2 −> 3
}

The contents of the corresponding file g.dot is shown on the right.

▶ See www.graphviz.org for detailed information on graphviz and dot.

,

Naumann, Scripting for Numerics with C++ 84

Plotting Data (gnuplot.cpp)

1 #include<cmath>
2 #include<fstream>
3 using namespace std;
4

5 template<typename T>
6 T f(T x) { return sin(x); } // function to be drawn
7

8 int main() {
9 double xmin=0, xmax=10, x; // subdomain

10 int nsamples=100; // sampling density
11 ofstream ofs(”f.dat”); // output file
12 x=xmin;
13 do {
14 ofs << x << ’ ’ << f(x) << endl; // point on the graph
15 x=x+(xmax−xmin)/nsamples; // next argument
16 } while (x<=xmax);
17 return 0;
18 }

,

Naumann, Scripting for Numerics with C++ 85

Plotting Data (Explained)

▶ Input files for gnuplot can be generated, e.g. by sampling a given function
into a data file f.dat.

▶ Run gnuplot to open the gnuplot shell.

▶ Type plot "f.dat" to get

-1

-0.8

-0.6

-0.4

-0.2

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10

"f.dat"

0 0
0.1 0.0998334
0.2 0.198669
...
9.8 −0.366479
9.9 −0.457536
10 −0.544021

The three first and three last lines of the corresponding file f.dat are shown
on the right.

▶ See www.gnuplot.info for detailed information on gnuplot.

,

Naumann, Scripting for Numerics with C++ 86

Summary

Source Code. Building and Running

Numeric Types and Arithmetic

Defensive Scripting

Flow of Control

Subroutines

Distributed Source

Linear Algebra

File I/O and Visualization

,

Naumann, Scripting for Numerics with C++ 87

	Source Code. Building and Running
	Numeric Types and Arithmetic
	Defensive Scripting
	Flow of Control
	Subroutines
	Distributed Source
	Linear Algebra
	File I/O and Visualization

