Jens Deussen

Dr. rer. nat.

Contact Details

  • Mail 
    Informatik 12: Software and Tools for Computational Engineering
    RWTH Aachen University
    D-52056 Aachen, Germany
  • Office: Seffenter Weg 23, 52074 Aachen
  • Room: 229
  • Phone: +49 (0)241/80 29224
  • Email: deussen (at) stce.rwth-aachen.de
  • Researcher at STCE: since 2015
  • Office Hours: on request

Research

  • Interval-adjoints in global optimization
  • Subdomain separability
  • Interval-adjoint significance analysis for approximate/unreliable computing (SCoRPiO project)
  • AD in differential algebraic equation with optimization criteria solvers
  • Hybrid MPI/OpenMP parallel computation of higher derivatives
  • Sparse higher derivatives

Publications:

  • 2021 
    • Deussen, J.: Global Derivatives. Dissertation, RWTH Aachen University, Aachen (2021).
  • 2020
    • Deussen, J., Naumann, U.: Subdomain separability in global optimization. Preprint on arXiv. https://arxiv.org/abs/2010.09591 (2020)
    • Deussen, J., Hüser, J., Naumann, U.: Toward global search for local optima. In: Neufeld, J.S., Buscher, U., Lasch, R., Möst, D., Schönberger, J. (eds.) Operations Research Proceedings 2019, pp. 97–104. Springer, Cham (2020)
  • 2019
    • Deussen, J., Naumann, U.: Efficient computation of sparse higher derivative tensors. In: Rodrigues J. et al. (eds) Computational Science – ICCS 2019. ICCS 2019. Lecture Notes in Computer Science 11536, pp. 3–17. Springer, Cham (2019)
    • Deussen, J., Naumann, U.: Discrete interval adjoints in unconstrained global optimization. In: Le Thi H., Le H., Pham Dinh T. (eds.) Optimization of Complex Systems: Theory, Models, Algorithms and Applications, pp. 78–88. Springer, Cham (2019)
  • 2018
    • Deussen, J., Mosenkis, V., Naumann, U.: Fast estimates of Greeks from American options: a case study in adjoint algorithmic differentiation. Technical Report AIB-2018-02, RWTH Aachen University, Aachen (2018)
  • 2016
    • Vassiliadis, V., Riehme, J., Deussen, J., Parasyris, K., Antonopoulos, C.D., Bellas, N., Lalis, S., Naumann, U.: Towards automatic significance analysis for approximate computing. In: Proceedings of CGO 2016 the 14th International Symposium on Code Generation and Optimization, pp. 182–193. ACM, New York, NY (2016)
    • Deussen, J., Riehme, J., Naumann, U.: Automation of significance analyses with interval splitting. In: Joubert G. R. et al. (eds) Parallel Computing: On the Road to Exascale, pp. 731740. IOS Press, Amsterdam (2016)

Talks:

  • 2023
    • Invited Talk at ADOPT meeting, Virtual: Subdomain Separability in Global Optimization
  • 2022
    • Invited Talk at NAG, Virtual: Global Derivatives
  • 2020 
    • 23rd European Workshop on Automatic Differentiation, Virtual:
      Generalization of Separability for Optimization Problems
  • 2019 
    • 6th World Congress on Global Optimization, Metz, France:
      Discrete Interval Adjoints in Unconstrained Global Optimization 
    • International Conference on Computational Science, Faro, Portugal:
      Efficient Computation of Sparse Higher Derivative Tensors
  •  2018
    • 18th SIAM Conference on Parallel Processing for Scientific Computing, Tokyo, Japan:
      Adjoint Methods for Stochastic Approximate Computing
    • SIAM Workshop on Combinatorial Scientific Computing, Bergen, Norway:
      Recursive Compression of Sparse Derivative Tensors
  • 2017
    • 3rd Workshop on Approximate Computing, Stockholm, Sweden:
      Compression of Higher Derivative Tensors in Stochastic Significance Analysis
    • Aachen Conference on Computational Engineering Science, Aachen, Germany:
      On the Efficient Computation of Higher Derivative Tensors (Poster)
  • 2016
    • 19th European Workshop on Automatic Differentiation, Kaiserslautern, Germany:
      dco/scorpio: An Interval-Adjoint Significance Analysis Tool
    • 2nd Workshop on Approximate Computing, Prague, Czech Republic:
      Interval-Adjoint Significance Analysis: A Case Study
    • SIAM Student Chapter, Seminar Series on Hot Topics in Applied Mathematics, Aachen, Germany:
      Greeks for American Options by Adjoint Algorithmic Differentiation
  • 2015
    • Mini-Symposium on Energy and Resilience in Parallel Programming, Edinburgh, Scotland:
      Automation of Significance Analyses with Interval Splitting
    • Workshop on Approximate Computing, Paderborn, Germany:
      Interval Derivative Based Significance Analysis
    • 18th European Workshop on Automatic Differentiation, Paderborn, Germany:
      Fast Delta-Estimates for American Options by Adjoint Algorithmic Differentiation

Teaching:

  • Advanced C++
  • Introduction to Programming (C++)
  • Computational Differentiation
  • Combinatorial Problems in Scientific Computing
  • Software Engineering Lab