
Data Flow Reversal I

Computational Complexity

Uwe Naumann

Informatik 12:
Software and Tools for Computational Engineering (STCE)

RWTH Aachen University

Contents

Objective and Learning Outcomes

Data Flow Reversal

Computational Complexity of Data Flow Reversal
DAG Reversal
Vertex Cover
Proof of NP-Completeness (Step 1)
Proof of NP-Completeness (Step 2)

Summary and Next Steps

,

Data Flow Reversal I, info@stce.rwth-aachen.de 2

Outline

Objective and Learning Outcomes

Data Flow Reversal

Computational Complexity of Data Flow Reversal
DAG Reversal
Vertex Cover
Proof of NP-Completeness (Step 1)
Proof of NP-Completeness (Step 2)

Summary and Next Steps

,

Data Flow Reversal I, info@stce.rwth-aachen.de 3

Data Flow Reversal I
Objective and Learning Outcomes

Objective

I Formulation of Data Flow Reversal problem as DAG Reversal and
proof of NP-completeness

Learning Outcomes

I You will understand
I DAG Reversal
I Minimum Memory Data Flow Reversal

I You will be able to
I reproduce the proof of NP completeness.

,

Data Flow Reversal I, info@stce.rwth-aachen.de 4

Outline

Objective and Learning Outcomes

Data Flow Reversal

Computational Complexity of Data Flow Reversal
DAG Reversal
Vertex Cover
Proof of NP-Completeness (Step 1)
Proof of NP-Completeness (Step 2)

Summary and Next Steps

,

Data Flow Reversal I, info@stce.rwth-aachen.de 5

Data Flow Reversal
Numerical Programs

We consider implementations of multivariate vector functions

F : IRn → IRm : y = F (x)

as (numerical computer) programs.

Such programs decompose into sequences of q = p + m elemental functions ϕj

evaluated as a single assignment code1

vj = ϕj(vk)k≺j for j = n, . . . , n + q − 1

and where vi = xi for i = 0, . . . , n − 1, w.l.o.g, yk = vn+p+k for
k = 0, . . . ,m − 1 and k ≺ j if vk is an argument of ϕj .

A directed acyclic graph (DAG) G = (V = X ∪ Z ∪ Y ,E) is induced such that
|X | = n, |Z | = p and |Y | = m.

1Variables are written once.
,

Data Flow Reversal I, info@stce.rwth-aachen.de 6

Data Flow Reversal
Example

t = x0 · sin(x0 · x1)
x0 = cos(t)
x1 = t/x1

v0 = x0
v1 = x1
v2 = v0 · v1
v3 = sin(v2)
v4 = v0 · v3
v5 = cos(v4)
v6 = v4/v1
x0 = v5
x1 = v6

G = (V ,E) :

0 1

2

3

4

5 6

Wanted: v6, v5, v4, v3, v2, v1, v0

A data flow reversal recovers the results of the elemental functions evaluated by
a program in reverse order. Relevant applications include debugging and adjoint
algorithmic differentiation.

,

Data Flow Reversal I, info@stce.rwth-aachen.de 7

Data Flow Reversal
Problem Formulation

The data flow reversal problem aims for recovery of the results of the elemental
functions evaluated by a program in reverse order such that for a given upper
bound MEM on the available persistent memory the computational cost is
minimized.

The computational cost (COST) is defined as the sum of the number of
elemental function evaluations (OPS) to be performed in addition to a single
evaluation of the program (requiring |Z ∪ Y | elemental function evaluations)
and the number of write accesses to persistent memory.

We assume vanishing cost for the strictly sequential read accesses to memory
(→ prefetching).

W.l.o.g, we assume only persistently stored values to be available for data flow
reversal, i.e, even vn+q−1 is not automatically available following the initial
evaluation of the program as the data flow reversal might not follow
immediately.

,

Data Flow Reversal I, info@stce.rwth-aachen.de 8

Data Flow Reversal
Store-All vs. Recompute-All

Borderline cases are

I store-all; Results of all elemental functions are pushed onto a stack.
Recovery implies reversal. MEM = |V | is maximized while OPS = |Z ∪ Y |
is minimized and COST = MEM, e.g, requiring MEM ≥ 7 in the previous
example.

I recompute-all: Results of all elemental functions are recomputed in reverse
order as functions of the persistent inputs to the program, respectively.
MEM = |X | is minimized while OPS = O(|Z ∪ Y |2) is maximized and
COST = MEM + OPS . e.g, requiring MEM = 2 in the previous example.

A data flow reversal needs to recompute nonpersistent values from persistent
values at locally quadratic (in the length of the longest path connecting the
corresponding vertices in the DAG) OPS , e.g, for MEM = 2 we get
OPS = 4 + 4 + 3 + 2 + 1 = 14.

,

Data Flow Reversal I, info@stce.rwth-aachen.de 9

Data Flow Reversal
Example

Let MEM = 3 allowing for persistent storage of one value in addition to the
two inputs, e.g, v0, v1, v4.

0 1

2

3

4

5 6

I compute all and store v0, v1, v4 ⇒ COST = 3

I compute v6 from v1 and v4 ⇒ COST = 4

I compute v5 from v4 ⇒ COST = 5

I v4 is available

I EITHER:
I compute v3 from v0 and v1 ⇒ COST = 7
I compute v2 from v0 and v1 ⇒ COST = 8
I v1 and v0 are available

I OR:
I compute v2 from v0 and v1 and store it

⇒ COST = 7
I compute v3 from v2 ⇒ COST = 8
I v2, v1 and v0 are available

,

Data Flow Reversal I, info@stce.rwth-aachen.de 10

Outline

Objective and Learning Outcomes

Data Flow Reversal

Computational Complexity of Data Flow Reversal
DAG Reversal
Vertex Cover
Proof of NP-Completeness (Step 1)
Proof of NP-Completeness (Step 2)

Summary and Next Steps

,

Data Flow Reversal I, info@stce.rwth-aachen.de 11

Data Flow Reversal
DAG Reversal

The data flow reversal problem is also known as DAG Reversal:

Given a DAG and two integers C ,MEM > 0, is there a data flow reversal that
uses at most MEM ≤ MEM memory units and yields a computational cost of
COST ≤ C?

DAG Reversal is NP-complete.

I U. Naumann: DAG Reversal is NP-Complete. Journal of Discrete
Algorithms, Elsevier 2010.

Part of the proof is by reduction from Vertex Cover.

,

Data Flow Reversal I, info@stce.rwth-aachen.de 12

Proof
Vertex Cover

Vertex Cover problem: Given a graph G = (V ,E) is there a subset W ⊆ V
of size ω ≤ Ω, s.t. each edge in E is incident with at least one vertex from W ?

Vertex Cover is NP-complete.

Proof: [Garey/Johnson (1979)]

Vertex Cover for DAGs is NP-complete.

Proof: Enumerate vertices and make edges directed
s.t. (i , j) ∈ E ⇔ i < j .

1 2

3

4

q.e.d.
-1 0

1

2

3

4 5

,

Data Flow Reversal I, info@stce.rwth-aachen.de 13

Proof
Step 1

The proof proceeds in two stages.

1. We show that asking for minimal MEM while keeping minimal
COST = |V | is NP-complete.

2. We show that an algorithm for DAG Reversal solves the above
efficiently. Hence, DAG Reversal cannot be easier than 1.

Minimum Memory Data Flow Reversal (MMDFR):

Given a DAG G = (V ,E) and an integer MEM > 0, is there a data flow
reversal with COST = |V | and MEM ≤ MEM?

MMDFR is NP-complete.

An algorithm for this decision version of MMDFR implies an algorithm for the
corresponding optimization version.

,

Data Flow Reversal I, info@stce.rwth-aachen.de 14

Proof
Decision vs. Optimization

A maximum of |V | solutions of the decision problem solves the optimization
problem.

Example

0 1

2

3

4

5 6

I MEM = 7 → store-all

I MEM = 6 → (e.g.) recompute v3
I MEM = 5 → (e.g.) recompute v2 and v5
I MEM = 4 → (e.g.) recompute v3, v5, and v6
I MEM ≤ 3 → no solution

,

Data Flow Reversal I, info@stce.rwth-aachen.de 15

Proof
Reduction from Vertex Cover

(Polynomial) Reduction from Vertex Cover to MMDFR is by enumeration
of vertices (⇒ DAG) and horizontal split of minimal vertices (⇒ G ′).

1 2

3

4

−1 0

1 2

3

4

We claim that there is a solution for MMDFR on G ′ with ¯MEM = Ω + |X | if
and only if there is a solution for Vertex Cover with Ω on G .

,

Data Flow Reversal I, info@stce.rwth-aachen.de 16

Proof
If And Only If

Obviously, |V | is a sharp lower bound for COST as the recovery of each value
(either by persistent storage during the initial evaluation of the program or by
recomputation using at least a single elemental function evaluation) has at
least unit cost; Store-all reaches the bound.

“⇐” Consider a solution for Vertex Cover (|W | ≤ Ω). Each edge is incident
with at least one vertex in W . Hence, predecessors of vertices from V \W
are in W . Values corresponding to vertices in W can be stored persistently
at unit cost and they can be recovered for free. Nonpersistent values
corresponding to vertices in V \W can be recomputed at unit cost.
Values of inputs need to be stored persistently in any case yielding a data
flow reversal with COST = |V | and MEM ≤ ¯MEM = Ω + |X |.

“⇒” Consider a solution for MMDFR (MEM ≤ ¯MEM = Ω + |X |).
Nonpersistent values need to be recomputed at unit cost. Hence, their
predecessors of the corresponding vertices need to be stored. The set W
of vertices corresponding to persistent values is a vertex cover in G with
|W | ≤ Ω.

q.e.d.

,

Data Flow Reversal I, info@stce.rwth-aachen.de 17

Proof
Reuse of Persistent Memory

Reuse of persistent memory implies recomputation and thus breaks the fixed
COST assumption of MMDFR, e.g,

0 1

2

3

4

5 6 I compute all and store v0, v1, v4 ⇒ COST = 3

I compute v6 from v1 and v4 ⇒ COST = 4

I compute v5 from v4 ⇒ COST = 5

I v4 is available

I compute v2 from v0 and v1 and overwrite v4
⇒ COST = 7

I compute v3 from v2 ⇒ COST = 8 > 7

I v2, v1 and v0 are available

,

Data Flow Reversal I, info@stce.rwth-aachen.de 18

Proof
Step 2

An algorithm for DAG Reversal can be used to solve MMDFR as follows:

For MEM = |V | there is a solution of DAG Reversal with COST = |V |
(e.g, store-all).

Decrease MEM by one at a time for as long as there is a solution with
COST = |V |. The smallest MEM for which such a solution exists is the
solution of the minimization version of MMDFR.

Hence, we need to solve at most |V | instances of DAG Reversal to solve
MMDFR.

MMDFR cannot be intractable while DAG Reversal is not (or P=NP and
all NP-complete problems become tractable).

q.e.d.

,

Data Flow Reversal I, info@stce.rwth-aachen.de 19

Outline

Objective and Learning Outcomes

Data Flow Reversal

Computational Complexity of Data Flow Reversal
DAG Reversal
Vertex Cover
Proof of NP-Completeness (Step 1)
Proof of NP-Completeness (Step 2)

Summary and Next Steps

,

Data Flow Reversal I, info@stce.rwth-aachen.de 20

Data Flow Reversal I
Summary and Next Steps

Summary

I Formulation of Data Flow Reversal problem as DAG Reversal and
proof of NP-completeness including
I Minimum Memory Data Flow Reversal
I Reduction from Vertex Cover

Next Steps

I Reproduce the proof of NP completeness.

I Continue the course to find out more ...

,

Data Flow Reversal I, info@stce.rwth-aachen.de 21

	Objective and Learning Outcomes
	Data Flow Reversal
	Computational Complexity of Data Flow Reversal
	DAG Reversal
	Vertex Cover
	Proof of NP-Completeness (Step 1)
	Proof of NP-Completeness (Step 2)

	Summary and Next Steps

