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Data Flow Reversal I
Objective and Learning Outcomes

Objective

I Formulation of Data Flow Reversal problem as DAG Reversal and
proof of NP-completeness

Learning Outcomes

I You will understand
I DAG Reversal
I Minimum Memory Data Flow Reversal

I You will be able to
I reproduce the proof of NP completeness.
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Data Flow Reversal
Numerical Programs

We consider implementations of multivariate vector functions

F : IRn → IRm : y = F (x)

as (numerical computer) programs.

Such programs decompose into sequences of q = p + m elemental functions ϕj

evaluated as a single assignment code1

vj = ϕj(vk)k≺j for j = n, . . . , n + q − 1

and where vi = xi for i = 0, . . . , n − 1, w.l.o.g, yk = vn+p+k for
k = 0, . . . ,m − 1 and k ≺ j if vk is an argument of ϕj .

A directed acyclic graph (DAG) G = (V = X ∪ Z ∪ Y ,E ) is induced such that
|X | = n, |Z | = p and |Y | = m.

1Variables are written once.
,
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Data Flow Reversal
Example

t = x0 · sin(x0 · x1)
x0 = cos(t)
x1 = t/x1

v0 = x0
v1 = x1
v2 = v0 · v1
v3 = sin(v2)
v4 = v0 · v3
v5 = cos(v4)
v6 = v4/v1
x0 = v5
x1 = v6

G = (V ,E ) :

0 1

2

3

4

5 6

Wanted: v6, v5, v4, v3, v2, v1, v0

A data flow reversal recovers the results of the elemental functions evaluated by
a program in reverse order. Relevant applications include debugging and adjoint
algorithmic differentiation.

,
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Data Flow Reversal
Problem Formulation

The data flow reversal problem aims for recovery of the results of the elemental
functions evaluated by a program in reverse order such that for a given upper
bound MEM on the available persistent memory the computational cost is
minimized.

The computational cost (COST ) is defined as the sum of the number of
elemental function evaluations (OPS) to be performed in addition to a single
evaluation of the program (requiring |Z ∪ Y | elemental function evaluations)
and the number of write accesses to persistent memory.

We assume vanishing cost for the strictly sequential read accesses to memory
(→ prefetching).

W.l.o.g, we assume only persistently stored values to be available for data flow
reversal, i.e, even vn+q−1 is not automatically available following the initial
evaluation of the program as the data flow reversal might not follow
immediately.

,
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Data Flow Reversal
Store-All vs. Recompute-All

Borderline cases are

I store-all; Results of all elemental functions are pushed onto a stack.
Recovery implies reversal. MEM = |V | is maximized while OPS = |Z ∪ Y |
is minimized and COST = MEM, e.g, requiring MEM ≥ 7 in the previous
example.

I recompute-all: Results of all elemental functions are recomputed in reverse
order as functions of the persistent inputs to the program, respectively.
MEM = |X | is minimized while OPS = O(|Z ∪ Y |2) is maximized and
COST = MEM + OPS . e.g, requiring MEM = 2 in the previous example.

A data flow reversal needs to recompute nonpersistent values from persistent
values at locally quadratic (in the length of the longest path connecting the
corresponding vertices in the DAG) OPS , e.g, for MEM = 2 we get
OPS = 4 + 4 + 3 + 2 + 1 = 14.

,
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Data Flow Reversal
Example

Let MEM = 3 allowing for persistent storage of one value in addition to the
two inputs, e.g, v0, v1, v4.

0 1

2

3

4

5 6

I compute all and store v0, v1, v4 ⇒ COST = 3

I compute v6 from v1 and v4 ⇒ COST = 4

I compute v5 from v4 ⇒ COST = 5

I v4 is available

I EITHER:
I compute v3 from v0 and v1 ⇒ COST = 7
I compute v2 from v0 and v1 ⇒ COST = 8
I v1 and v0 are available

I OR:
I compute v2 from v0 and v1 and store it

⇒ COST = 7
I compute v3 from v2 ⇒ COST = 8
I v2, v1 and v0 are available

,
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Data Flow Reversal
DAG Reversal

The data flow reversal problem is also known as DAG Reversal:

Given a DAG and two integers C ,MEM > 0, is there a data flow reversal that
uses at most MEM ≤ MEM memory units and yields a computational cost of
COST ≤ C?

DAG Reversal is NP-complete.

I U. Naumann: DAG Reversal is NP-Complete. Journal of Discrete
Algorithms, Elsevier 2010.

Part of the proof is by reduction from Vertex Cover.

,
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Proof
Vertex Cover

Vertex Cover problem: Given a graph G = (V ,E ) is there a subset W ⊆ V
of size ω ≤ Ω, s.t. each edge in E is incident with at least one vertex from W ?

Vertex Cover is NP-complete.

Proof: [Garey/Johnson (1979)]

Vertex Cover for DAGs is NP-complete.

Proof: Enumerate vertices and make edges directed
s.t. (i , j) ∈ E ⇔ i < j .

1 2

3

4

q.e.d.
-1 0

1

2

3

4 5

,
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Proof
Step 1

The proof proceeds in two stages.

1. We show that asking for minimal MEM while keeping minimal
COST = |V | is NP-complete.

2. We show that an algorithm for DAG Reversal solves the above
efficiently. Hence, DAG Reversal cannot be easier than 1.

Minimum Memory Data Flow Reversal (MMDFR):

Given a DAG G = (V ,E ) and an integer MEM > 0, is there a data flow
reversal with COST = |V | and MEM ≤ MEM?

MMDFR is NP-complete.

An algorithm for this decision version of MMDFR implies an algorithm for the
corresponding optimization version.

,
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Proof
Decision vs. Optimization

A maximum of |V | solutions of the decision problem solves the optimization
problem.

Example

0 1

2

3

4

5 6

I MEM = 7 → store-all

I MEM = 6 → (e.g.) recompute v3
I MEM = 5 → (e.g.) recompute v2 and v5
I MEM = 4 → (e.g.) recompute v3, v5, and v6
I MEM ≤ 3 → no solution

,

Data Flow Reversal I, info@stce.rwth-aachen.de 15



Proof
Reduction from Vertex Cover

(Polynomial) Reduction from Vertex Cover to MMDFR is by enumeration
of vertices (⇒ DAG) and horizontal split of minimal vertices (⇒ G ′ ).

1 2

3

4

−1 0

1 2

3

4

We claim that there is a solution for MMDFR on G ′ with ¯MEM = Ω + |X | if
and only if there is a solution for Vertex Cover with Ω on G .

,
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Proof
If And Only If

Obviously, |V | is a sharp lower bound for COST as the recovery of each value
(either by persistent storage during the initial evaluation of the program or by
recomputation using at least a single elemental function evaluation) has at
least unit cost; Store-all reaches the bound.

“⇐” Consider a solution for Vertex Cover (|W | ≤ Ω). Each edge is incident
with at least one vertex in W . Hence, predecessors of vertices from V \W
are in W . Values corresponding to vertices in W can be stored persistently
at unit cost and they can be recovered for free. Nonpersistent values
corresponding to vertices in V \W can be recomputed at unit cost.
Values of inputs need to be stored persistently in any case yielding a data
flow reversal with COST = |V | and MEM ≤ ¯MEM = Ω + |X |.

“⇒” Consider a solution for MMDFR (MEM ≤ ¯MEM = Ω + |X |).
Nonpersistent values need to be recomputed at unit cost. Hence, their
predecessors of the corresponding vertices need to be stored. The set W
of vertices corresponding to persistent values is a vertex cover in G with
|W | ≤ Ω.

q.e.d.

,
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Proof
Reuse of Persistent Memory

Reuse of persistent memory implies recomputation and thus breaks the fixed
COST assumption of MMDFR, e.g,

0 1

2

3

4

5 6 I compute all and store v0, v1, v4 ⇒ COST = 3

I compute v6 from v1 and v4 ⇒ COST = 4

I compute v5 from v4 ⇒ COST = 5

I v4 is available

I compute v2 from v0 and v1 and overwrite v4
⇒ COST = 7

I compute v3 from v2 ⇒ COST = 8 > 7

I v2, v1 and v0 are available

,
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Proof
Step 2

An algorithm for DAG Reversal can be used to solve MMDFR as follows:

For MEM = |V | there is a solution of DAG Reversal with COST = |V |
(e.g, store-all).

Decrease MEM by one at a time for as long as there is a solution with
COST = |V |. The smallest MEM for which such a solution exists is the
solution of the minimization version of MMDFR.

Hence, we need to solve at most |V | instances of DAG Reversal to solve
MMDFR.

MMDFR cannot be intractable while DAG Reversal is not (or P=NP and
all NP-complete problems become tractable).

q.e.d.

,
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Data Flow Reversal I
Summary and Next Steps

Summary

I Formulation of Data Flow Reversal problem as DAG Reversal and
proof of NP-completeness including
I Minimum Memory Data Flow Reversal
I Reduction from Vertex Cover

Next Steps

I Reproduce the proof of NP completeness.

I Continue the course to find out more ...

,
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